

CDF Status and Upgrade Plans

Al Goshaw

Duke University and Fermilab

HEPAP Meeting April 26, 2002

CDF Collaboration

North America

3 Natl. Labs 28 Universities

1 Universities

Totals

12 countries

58 institutions

581 physicists

Europe

1 Research Lab6 Universities

1 University

4 Universities

2 Research Labs

1 University

1 University

Finland

Asia

5 Universities

1 Research Lab

1 University

3 Universities

Collaboration is growing by both number of people and institutions

Outline

- CDF detector status
- Recent data analysis
- Run 2b upgrade plans

CDF Detector Status

Brief Overview

CDF Detector Status

- A summary of the status and performance of each detector subsystem was presented to HEPAP at the October 2001 meeting. http://www-cdf.fnal.gov/spokes/CDF_Status_HEPAP.html
- Since then the detector has been operating with a rich collection of physics triggers, recording data that is being used for a variety of physics analyses.
- Today, briefly review the detector status, but concentrate mainly on what we have learned from preliminary studies of the data taken.

A Reminder: CDF Run 2a Detector Upgrades

A new 3d tracking system and vertex detector covering |? |out to 2.0.

A new scintillating tile plug calorimeter covering |? | out to 3.6.

A new time-of-flight system

A Reminder: CDF Run 2a Detector Upgrades

- A new forward calorimeter covering |? | out to 5.5
- A new luminosity detector
- New front-end electronics (132 ns)

- New L1, L2, L3 trigger system (pipelined)
- New DAQ and offline data handling

Detector Status

- Muon detectors: Operating with 92% of ? -? coverage
 - Small section of "miniskirt" being commissioned
 - ∠ High current draw in upper muon detectors
 - Working with Beams Division to reduce losses
 - Plan to install additional shielding at CDF in the fall
- Calorimeters: Operating with 100% of channels
 - ∠ Central and plug calorimeter fully integrated in trigger
 - New forward miniplug being commissioned
- Time of Flight:Operating with 100% of channelsBeing used for offline particle ID

Detector Status

- Central Outer Tracker (COT):
 Operating with 99.8% of channels

 - ∠ Online L1 track trigger selects high Pt tracks (XFT) ————

Cherenkov Luminosity Counters (CLC):

Operating with 100% of channels

∠ Online and offline luminosity

∠ Beam profile

beam collision z

trigger

efficiency

Silicon Detector Status

- Intermediate Silicon layer (ISL)
 - ∠ Operating with 60% of ladders powered (89/148)
 - ∠ Power off central barrel (|?| <1.0) until cooling lines cleared

 SVT imp
 </p>
- Silicon Vertex Detector (SVX)
 - ✓ Operating with 90% of ladders powered (324/360)
- Inner axial silicon layer on beam pipe (LOO)
 - ∠ Operating with 95% of ladders powered (46/48)
 - ∠ Used offline for improving impact parameter resolution

spot spread

 d_0 (cm)

Layer 00

Trigger and DAQ

- L1, L2 and L3 triggers all operational
 - - ∠ Jets, electrons, muons, photons, missing E_t

 - ∠ L3 event reconstruction with farm of 144 (dual) PC's
 - \angle At 1 x 10³¹ (and including many calibration triggers)
 - ∠ L1 accept rate 3.4 KHz
 - ∠ L2 accept rate 220 Hz
 - ∠ L3 accept rate 25 Hz
 - ∠ Dead time < 2 %
 </p>

- - ∠ Current trigger table can accommodate luminosity to ~ 4 x 10³¹
 - ∠ L2 accept rates and execution time the current limiting factor
 - ∠ Improvements will keep pace with Tevatron luminosity increases 111

Trigger and DAQ

- DAQ system working as designed

 - ∠ Data logging rate at design of 20 MB/s

- Data recorded for analysis since July 2001 = 22 pb⁻¹

 - Additional beam time used for trigger development
 - ∠ Down times logged and used to make improvements

Detector Status: Bottom Line

- The CDF detector is collecting physics quality data with triggers that feed all our major analysis topics.
- The detector, trigger and DAQ are ready for the higher luminosities expected from the Tevatron.
- The offline reconstruction (see results below) is in an advanced state for most physics analyses, and the offline farm operation is keeping pace with the data flow.
- Recent problems:

 - - Accelerator interlocks being put in place
 - ✓ Studies of failure mode in progress

Recent Data Analysis

A sample:
W and Z bosons
High Et jets
Beauty and Charm

$Z \rightarrow e^+ e^-$

Z bosons provide an important monitor of detector/trigger performance and our understanding of the accuracy of simulations. Eventually Z -> b b will be used for measurement of di-jet mass resolution, critical for the Higgs search

Central Calorimeter

Central and Plug Calorimeter

W → e ?

Precise measurement of the W mass and width are a central part of the Run 2a Physics program. Good W boson detection is obviously critical to top studies and future searches for the Higgs and other new physics.

$\mathsf{W} \longrightarrow ?$

Tau lepton detection will provide additional tests of lepton universality and expand the range of SUSY searches

Towards high Et jet physics ...

- Using the new plug calorimeter CDF can extend the the high Et jet probes to high |? |
- As shown below, there is a smooth transition between jet triggers with 20, 50, 70 and 100 GeV thresholds

Heavy flavor physics in Run 2

- Will be qualitatively better than the Run 1 program

 - ∠ Improved impact parameter resolution (L00 on beam pipe)
 - ∠ Particle I D via TOF and dE/dx (COT)
 - ✓ Online L2 secondary vertex trigger (SVT)
 - Higher rate trigger and DAQ
- Beauty physics will complement B factories [B_s, B_c, ?_b, rare decays], CP violation studies (????)
- A new high sensitivity charm physics program

Charm Physics

Very large charm signals. Opens up a new charm physics program. I mportant for beauty studies and SUSY searches.

50 pb ⁻¹	2 fb ⁻¹	E791	FOCUS	? (4S)/100 fb ⁻¹
500K	20M	40K	120K	1M

Assembling B Physics Ingredients ...

$$K_s \rightarrow ?^+ ?^-$$

A. Goshaw HEPAP April 2002

First B physics signals ...

$$B^{\pm} \rightarrow J/? K^{\pm}$$

CDF Run 2a Physics Program

- All physics groups deep into physics studies

 - ∠ Top
 - **∠** QCD
 - ∠ New phenomena
- General plan:

 - ∠ New measurements from all physics groups summer 2003
 - (B_s , B_c , $?_b$, charm, W/Z+jets/photons, top, high E_t jets, eliminate or confirm Run 1 observations of anomalous events, ...)

Run 2b Upgrades

An Overview

Run 2b Upgrades

- Upgrades focused on preserving high Pt physics program (Higgs, SUSY, other heavy particles)
- Address specific limitations of detector at high integrated luminosities (> 5 fb⁻¹) and high instantaneous luminosities (5x10³² cm⁻²s⁻¹)
- Most components of CDF detector need no upgrades
- Upgrades will include:

 - Central pre-radiator replacement
 - Addition of timing on electromagnetic calorimeters
 - ✓ Some trigger/DAQ upgrades

Silicon detector replacement

- This is the major part of the upgrade project
 - ∠ Determines the start and duration of the shutdown (~ 6 months)
 - Also the dominant part of the project cost
- The intermediate silicon tracker (ISL) will not be modified
- Replacement of SVX/L00 is required because of radiation damage

Estimates of radiation dose limits

Layer	Lifetime (fb ⁻¹)		
00	7.4		
0	4.3		
1	8.5		
2	10.7		
3	23		
4	14		

Measurements made from early Run2 operation confirm dose Estimates. radial dependence ~ 1/R?

? = 1.61.7

Silicon detector replacement

- Match or exceed performance of Run 2a SVX+L00
- Goal is a simple, robust design
 - ∠ Learn from experience with construction of SVX, SVX', SVXII and LOO detectors
 - ∠ Combine effort with D0 where possible
 - - ∠ All sensors single sided silicon
 - ∠ LO is on beam pipe and replaces LOO

Other Run 2b detector upgrades

- Replacement of central pre-shower radiator
 - Applications:
 - ∠ Improves electron and photon identification
 - ✓ Improves jet energy resolution (helps estimate EM fraction)
- Additional of timing to EM calorimeter towers
 - Application:
- Extension of level 3 event builder with commercial ATM switch. Increases L3 input rate limit from 300 to 1000 Hz
 - Application:
 - \angle Allows full acceptance of L2 high Pt accept rate expected to be ~ 600Hz for L = 5 x 10³².
- Additional trigger/DAQ (will profit from operational experience)
 - ∠ L1 track stereo information (reduces lepton trigger fakes)
 - ∠ New L2 CPU processors (more processing power)
 - ∠ Possibly new TDC's (ability to buffer high hit rates).

Summary CDF Status and Plans

- The Run 2a detector is collecting physics quality data and is ready for the higher Tevatron luminosity expected later this year.
- All physics groups are analyzing initial data, developing validation procedures, and tuning detector simulations at a level of detail far beyond that attained in Run 1.
- Plans for first Run 2 physics results are in place:
 - ∠ Progress reports in summer-fall 2002

 - ✓ New measurements from all physics groups in summer 2003
- Upgrades of the CDF detector for Run 2b are focused on high P_t physics searches. The exact scope will be defined in June after the Aspen PAC meeting.